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Time-dependent density-functional theory (TDDFT) is a powerful tool in studying the nonequilibrium dy-
namics of inhomogeneous interacting many-body systems. Here we show that the simple adiabatic local-spin-
density approximation for the time-dependent exchange-correlation potential is surprisingly accurate in de-
scribing collective density and spin dynamics in strongly correlated one-dimensional ultracold Fermi gases.
Our conclusions are based on extensive comparisons between our TDDFT results and accurate results based on

the adaptive time-dependent density-matrix renormalization-group method.
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I. INTRODUCTION

Quantum many-body systems of one-dimensional (1D)
interacting particles have attracted an enormous interest for
more than fifty years.! These systems are nowadays available
in a large number of different laboratory realizations ranging
from single-wall carbon nanotubes’> to semiconductor
nanowires,® conducting molecules,* chiral Luttinger liquids
at fractional quantum Hall edges,” and trapped atomic
gases.®8

Regardless of statistics, the effective low-energy descrip-
tion of many of these systems is based on a harmonic theory
of long-wavelength fluctuations,’ i.e., on the “Luttinger-
liquid” model.! One distinctive feature of the Luttinger liquid
is that its low-energy spectrum is completely dominated by
collective excitations as opposed to individual quasiparticles
that carry both charge and spin. A single-particle excitation
in a Luttinger liquid directly decays into collective spin and
charge excitations that propagate with different velocities.
This phenomenon is called “spin-charge separation.”!

Tunneling measurements between two parallel quantum
wires in GaAs/AlGaAs heterostructures with varying elec-
tron density have demonstrated® the existence of collective
spin and charge excitations with different velocities.

It has also been proposed to study experimentally the dy-
namics of spin and charge excitations in real time using
1D two-component cold Fermi gases,” where “spin” and
“charge” refer, respectively, to two internal (hyperfine)
atomic states and to the atomic mass density.'*'* In Ref. 15
a different aspect of this collective behavior has been pointed
out: namely, spin excitations are intrinsically damped at fi-
nite temperature while charge excitations are not.

Important for the experimental observation of the time
evolution of excitations in ultracold quantum gases is the
creation of a sizable perturbation of the gas (strong enough
to be detected). The theoretical description of such strong
perturbations, however, needs techniques going beyond the
low-energy Luttinger-liquid model." For example, the decay
of sizable density perturbations!® and of a single-particle
excitation'"!? has been recently demonstrated in real time in
a numerical time-dependent density-matrix renormalization-
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group (tDMRG) (Refs. 16 and 17) study of the 1D Fermi-
Hubbard model.

The aim of the present work is to provide a conceptually
and numerically simple time-dependent microscopic many-
body theory that is capable of capturing the main physical
features of the time evolution of collective excitations.

A powerful theoretical tool in studying the interplay be-
tween interactions and time-dependent inhomogeneous ex-
ternal fields of arbitrary shape is the time-dependent density-
functional theory (TDDFT),'®2° which is based on the
Runge-Gross theorem?! and on the time-dependent Kohn-
Sham (KS) equations. Many-body effects enter TDDFT via
the time-dependent exchange-correlation (xc) functional,
which is often treated by the adiabatic local-density approxi-
mation (ALDA).'®22 In this approximation one assumes that
the time-dependent xc potential is just the static xc potential
evaluated at the instantaneous density. The static xc potential
is then treated within the static local-density approximation
(LDA). The main characteristic of the ALDA is that it is
local in time, as well as in space. Memory effects, whereby
the xc potential at a time instant might depend on the density
at an earlier time, are completely ignored. Very attractive
features of the ALDA are its extreme simplicity, the ease of
implementation, and the fact that it is not restricted to small
deviations from the ground-state density, i.e., to the linear-
response regime.

Even though several nonadiabatic beyond-ALDA approxi-
mate functionals are available nowadays (see, e.g., Refs.
23-27), in this work we focus on a simple adiabatic xc func-
tional and test its performance in describing a particular
problem: collective density and spin dynamics in strongly
correlated inhomogeneous lattice systems. Building upon
earlier ideas described at length in Refs. 28-32, we here
employ a lattice TDDFT scheme in which the time-
dependent xc potential is determined exactly at the adiabatic
local-spin-density-approximation level through the Bethe-
Ansatz (BA) solution of the homogeneous 1D Hubbard
model.> The numerical results based on this scheme are
tested against accurate adaptive tDMRG simulation data for
both spin-unpolarized and spin-polarized systems.

The contents of the paper are briefly described as follows.
In Sec. II we introduce the model lattice Hamiltonian that we
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use to study collective excitations and we briefly summarize
its exact solution in the absence of external potentials. In
Sec. III we present the self-consistent lattice TDDFT scheme
that we use to deal with the time-dependent inhomogeneous
system and introduce the Bethe-Ansatz adiabatic local-spin-
density approximation (LSDA) that we employ for the xc
potential. In Sec. IV we report and discuss our main numeri-
cal results in comparison with tDMRG simulation data. Fi-
nally, in Sec. V we summarize our main conclusions and
future perspectives.

II. MODEL

We consider a two-component repulsive Fermi gas with N
atoms confined to a 1D tube and subjected to an optical
lattice potential applied in the direction of the tube. The op-
tical lattice has unit lattice constant and L lattice sites. For
times =0 the system is in the presence of a spin-selective
focused laser-induced potential, which creates a strong local
disturbance in the ultracold gas. At time =07 this local po-
tential is suddenly turned off: we are interested in the subse-
quent time evolution of the spin-resolved densities.

This system is modeled by the following Fermi-Hubbard
Hamiltonian,3*

(D) == y2 (& i1p+ Hee) + UX iy + 2 Vig 0y

= ﬂref + ,}A—[ext(t) . (1 )

In Eq. (1), v is the hopping parameter, ¢| (¢;,) creates (de-
stroys) a fermion on the ith site (ie[1,L]), o=1,| is a
pseudospin-1/2 degree of freedom (hyperfine-state label), U
>0 is the strength of the on-site Hubbard repulsion, and
ﬁig=6;!'aé,-g. We also introduce for future purposes the local
number operator 7;=7;,+7; and the local-spin operator §;
=ﬁ,¢—ﬁ,» IE

The “time-dependent” Hamiltonian H,(r) models the
aforementioned spin-selective focused laser-induced poten-
tial. The external potential V;,(7) is taken to be of the follow-
ing simple Gaussian form

. 2
[i-w+1)/2] }@(_t)

= Vi, 0(-1), (2)

where ©(x) is the Heaviside step function. This guarantees
that the local potential V5x', which is active for all times ¢
=0 is suddenly switched off at time r=0*. Note that the time
t enters the problem through the step function only. We are
not really studying a time-dependent problem but only the

dynamics of a system after a sudden local quench: an initial

state |W,), which is an eigenstate of ﬂref+2i’(,vj’“ﬁ is

Lo
propagated forward in time with a different Ham?ltonian
(Hoe- [W(1))=exp(—iH,t)| W) is the state of the system at
time ¢. Present-day technology in cold-atom-gas laboratories
allows changing of the external potentials on short time
scales. By this it is possible to explore the regime where the
many-body system is still governed by a unitary evolution
but with nonequilibrium initial conditions.
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The number of atoms with spin up, N;
=3V (1)|Ai;|¥ (1)), can be different from the number of at-
oms with spin down, N|=2(W(t)|A;|¥(r)). The particle
number N; and N| are separately conserved quantities be-
cause no spin-flip mechanism is included in the Hamiltonian
(1). The model (1) must be accompanied by some boundary
conditions: in this work we choose for simplicity open (hard
wall) boundary conditions (OBCs). OBCs do not model well
the most common experimental setups®~® in which a para-
bolic trapping acts on the Fermi gas to keep it into the optical
lattice. However, we have deliberately decided to limit our
present investigations to simple OBCs to disentangle spuri-
ous effects (mainly spatial coexistence of different quantum
phases) that can be induced by the parabolic trapping from
fundamental effects related to the dynamics after the quench.

In the absence of Hey(?) [i.e., for V,,(1)=0], the Hamil-
tonian in Eq. (1) reduces to a 1D homogeneous Hubbard
model that has been solved exactly by Lieb and Wu.>3 At

zero temperature the properties of ﬂref in the thermodynamic
limit (N,,L— =) are determined by the spin-resolved filling
factors n,=N,/L and by the dimensionless coupling constant
u=U/vy. For simplicity, we limit the analysis below to n
=n+n <l and, for definiteness, we take n=n,.

According to Lieb and Wu,33 the ground state of . in
the presence of repulsive interactions and in the thermody-
namic limit is described by two continuous distribution func-
tions p(x) and of(y) which satisfy the BA coupled integral
equations,

1 cosxf”g u/4d

p(X):;T+ ™ J_p (u/4)2+(y—sinx)

)
aly) = if u/4

T _g (u/4)2 + (y —sin x)?

1 (5 u/2
-— oy')dy'. 4
SR

The parameters Q and B are determined by the normalization

conditions
+0
f p(x)dx=n

-0

Soy)dy, 3)

and

p(x)dx

+B (5)
f a(y)dy = n
-B

The ground-state energy of the system (per site) is given by

+0
egs(ny,n ,u)=- 2yf p(x)cos x dx. (6)

-0
III. TIME-EVOLUTION WITHIN TIME-DEPENDENT

DENSITY-FUNCTIONAL THEORY

In this section we describe the two-step procedure that we
have followed to calculate the time-evolution of the spin-
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resolved site-occupation profiles n;,(z). We first calculate the
spin-resolved site-occupation profiles corresponding to |W)
for times t=0 by means of a static DFT calculation and then
find the subsequent time evolution for >0 by means of
TDDFT.

A. Preparation of the initial state

As we have already noted, for times =0 the Hamiltonian
(1) with OBCs describes an equilibrium ground-state prob-
lem. We can calculate accurately the ground-state spin-
resolved site-occupation proﬁles of the inhomogeneous sys-

tem described by H(r=0)= Href+2, Vs, by means of a
DFT scheme based on Egs. (3)-(6). We have in fact gener-
alized the site-occupation-functional theory (SOFT) scheme
proposed in Ref. 30 and based on the BA local-density ap-
proximation to the case in which the external potential is
spin dependent (spin SOFT). We here summarize the main
steps that we have followed to calculate the ground-state
spin-resolved site-occupation profiles n;,(t=0).

Within spin SOFT n;,=n;,(t=0) can be obtained by
solving self-consistently the static lattice KS equations,

E[ Vit Vie Silely = e el (7)

together with the closure

= > o)

a,0cc.

: (8)

where the sum runs over the occupied orbitals. Here y;;=y
>0 if i and j are nearest-neighbor sites and zero otherwise,
and VES = Un s+ ViS4 VX' where 0'——0' The first term in the
effectlve Kohn- Sham potentlal XS is the Hartree mean-field
contribution while V}; is the (not exactly known) xc poten-
tial. As already stressed in Ref. 30, exchange interactions
between parallel-pseudospin atoms have been effectively
eliminated in the Hubbard model (1) by restricting the model
to one orbital per site. Hence parallel-pseudospin interactions
are not treated dynamically in solving the Hamiltonian but
are accounted for implicitly via a restriction of the Hilbert
space. To stress the analogy of the present work with ab
initio applications of standard DFT, we nevertheless continue
to call V;; the exchange-correlation potential but it is under-
stood that the exchange contribution to this quantity is ex-
actly zero.

The LSDA has been shown to provide an excellent ac-
count of the ground-state properties of a large variety of
inhomogeneous systems.'$333¢ In this work we have em-
ployed the following BA-based LSDA (BA-LSDA) func-
tional

Vie = Viglpa-Lspa = ch ,,(nT,nl,u)ln oy 9)

where, in analogy with ab initio spin DFT, the xc potential

er(“,(nT,n |»u) of the reference system described by H,or is

defined by
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hom

J
XC U(”T’”l’u) - on [8GS(nT»nlau) - SGS(nPnJ,,O) - Una'n(?]
ag

(10)

Thus, within the LSDA scheme proposed in Egs. (9) and
(10), the only necessary input is the xc potential
vigfg(nT,n |-u) of the homogeneous reference system, which
can be calculated exactly following a very similar procedure
to that outlined in Ref. 30.

The self-consistent scheme represented by Egs. (7)-(10)
can be solved numerically for each set of parameters
{L,N;,N ,u,W,/y,w}. The outcome of these calculations is
n;,, which is used in the next section as the initial condition
for the time evolution.

B. Time-evolution within time-dependent density-functional
theory

The spin-resolved site-occupation profiles of the many-
body system described by the Hamiltonian (1) at time ¢ can
be obtained by solving single-particle-like time-dependent
lattice KS equations,

ihd ) 2(1) = E[ Y+ Ve8], (1)

with initial conditions nw(O)=n,»U. As in the static case, the
spin-resolved time-dependent site occupations n,,(f) are cal-
culated by adding up the contributions of the orbitals that are
occupied at the initial time,

> WP (12)
a,0ccC.
In Eq. (11) VKS(t) Un;5(t)+Vi(t) is the spin-resolved KS.
The first term in the effective KS potential is the instanta-
neous Hartree mean-field contribution while Vi:(¢) is the (not
exactly known) xc potential. The time-dependent spin-
resolved KS potential must be determined self-consistently
with the site-occupation profiles n,,(¢). This means that, in
practice, the initial ground-state densities n,, determine the
initial KS potential, which is then used to recalculate the
site-occupation profiles at an infinitesimally later time, and
SO on.

In this work we have chosen to approximate the time-
dependent xc potential Vi (f) with a BA-based adiabatic
local-spin-density approximation (BA-ALSDA):

Vis(t) = Vig(t)|ga-aLspa =

n;,(1) =

h
XSTT(”T,’H’ u) |n(r~>nm(t) .

(13)

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we report some illustrative numerical re-
sults that we have obtained applying the TDDFT/BA-
ALSDA method described above.

All the numerical results presented below correspond to a
system with N=28 atoms on L=72 sites, the OBCs being
imposed at the sites i=0 and i=73. We compare the results
obtained with the TDDFT/BA-ALSDA with results of the
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FIG. 1. (Color online) Charge n,(¢) and spin s;(t) occupations as functions of lattice site i and time ¢ for L=72 (the hard-wall boundary
conditions are imposed at the sites 0 and 73), Ny=N =14, u=+2, W;/y=W/y==7/18, and w=2. TDDFT data (filled circles and squares)
are compared with tDMRG data (X and +). Top left panel: ground-state charge and spin occupations for times = 0. Top right panel: same
as in the top left panel but at time t=>5%/7y. Bottom left panel: same as in the top panels but at time r=10%/y. Bottom right panel: same as

in the bottom left panel but at time r=15%/7.

adaptive tDMRG. The adaptive tDMRG relies on the use of
an effective Hilbert space of dimension M adapted at each
time step. In the current work the time evolution is per-
formed using a Suzuki-Trotter decomposition. Several hun-
dred density-matrix renormalization-group (DMRG) states
are kept (up to M=800) and time steps of the order of
O(0.1A/7) are used to achieve accurate results up to long
times. For a discussion of the sources of uncertainties, we
refer the reader to the work by Gobert et al.’’

In Fig. 1 we show results for a spin-unpolarized system
(N;=N,=14) with U=+27y. In this special simulation the
external potential is chosen to be spin independent: W;
=W, =-7/18 [see Eq. (2)]. The initial charge n,=n;;+n;  and
spin local occupations s;=n;;—n; are shown in the top left
panel. The spin occupation is identically zero in this spin-
unpolarized situation simply due to the symmetry between
the T- and |-spin atoms. The effect of the external potential
results in a local perturbation of the charge-density distribu-
tion, i.e., the dip in Fig. 1. Additional deviations from a
homogeneous distribution are due to OBCs which cause
Friedel oscillations.

We find an excellent agreement between the ground-state
DFT/BA-LSDA results (see Sec. III A) and the DMRG re-
sults. Small differences between the two are visible only
when close to the boundaries and in the local perturbation.

OBCs are very severe boundary conditions for BA-LSDA:
the performance of this approximation increases in the pres-
ence of soft boundaries, such as those created by a parabolic
trapping potential—see Ref. 30. Our finding is in agreement
with earlier studies®® in which the inability of the BA local-
density approximation to reproduce the correct Friedel oscil-
lations in the presence of a single impurity (or close to a
sharp boundary) has been noted. In general, no local-density
approximation for the xc potential is expected to produce
Friedel oscillations with an amplitude that scales as a power
law as a function of the distance from the impurity/boundary,
with an exponent that is controlled by the interaction
strength. Of course, this inadequacy of BA-LSDA is more
severe at strong coupling: see, for example, the top left panel
in Fig. 6.

The time evolution of charge and spin occupations subse-
quent to the sudden switching off of the external local poten-
tial is illustrated in the other three panels of Fig. 1 for times
t=5h/7vy, 10h/vy, and 15A/+y. For small times t<<5#A/vy the
initial dip in the charge density starts splitting into two coun-
terpropagating perturbations. After the splitting the perturba-
tions move with a certain velocity toward the boundaries.
During the evolution a deformation of the shape of the den-
sity perturbations can be seen. Scattering of the perturbation
from the Friedel oscillations and the boundaries occurs.
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FIG. 2. (Color online) Same as in Fig. 1 but for t=207%/y (top
panel) and t=30%/7y (bottom panel).

We see how TDDFT/BA-ALSDA results are in full quan-
titative agreement with the tDMRG data. The agreement re-
mains quite decent even at times later than r=15%/7, when
reflections from the boundaries and interference with the mi-
croscopic Friedel oscillations are expected to spoil the per-
formance of TDDFT/BA-ALSDA. For example, in Fig. 2 we
have reported the comparison between TDDFT/BA-ALSDA
and tDMRG data at 1=20%/~y and 3074/ .

In the results shown in Figs. 1 and 2 the spin dynamics is
trivial: 5;(r)=0 at all times. In order to check the predicting
power of TDDFT/BA-ALSDA in regard to spin dynamics, in
Fig. 3 we show results for a spin-polarized system (N;=20
and N, =8). Note that the local external potential in this case
is again spin independent (as it was in the case of Fig. 1) and
couples only to the total-charge sector. Nonetheless, due to
the imbalance between the number of atoms with different
spin, this local disturbance generates a nontrivial spin dy-
namics. This is a consequence of the fact that the spin and
charge sectors of the spin-polarized 1D Hubbard model away
from half filling are coupled.'?3°~*> The coupling affects the
dynamics considerably. In contrast to the spin-balanced case,
the perturbation does not decay into noninteracting charge
and spin perturbations. As before the charge-density pertur-
bation evolves into two counterpropagating perturbations.
However, the creation of a pronounced dip at the center of
the system, which is due to the interaction with the slower
spin perturbation, can be observed. We clearly see from Fig.
3 how the agreement between TDDFT/BA-ALSDA and tD-
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MRG is also very satisfactory in this spin-polarized case.
Deviations are mainly observed close to the boundaries.

All numerical results shown in Figs. 1-3 have been ob-
tained for U=+27y. We have also checked how the relative
strength U/vy of interactions influences the reliability of
TDDFT/BA-ALSDA. In Figs. 4-6 we show results for
spin-unpolarized and spin-polarized systems at U=+4y
and U=+67. With increasing coupling strength, the devia-
tions between the two methods increase both for the initial
state and the time evolution. For the initial state the Friedel
oscillations are not captured correctly (mainly the 4kg
component®®) and large deviations at the boundaries arise.
In particular, the results for the spin-density profiles at
U=+6vy show considerable differences between the two
methods. In the time evolution, in contrast to smaller cou-
plings, the form of the charge perturbation shows deviations
between the results of the two methods even in the unpolar-
ized case (see the top right panel in Fig. 6). However, the
main features of the tDMRG data are qualitatively repro-
duced by TDDFT/BA-ALSDA (e.g., the splitting into two
counterpropagating perturbations with approximately the
correct velocity). From these plots we can see how the pre-
dicting power of TDDFI/BA-ALSDA is quite acceptable
also at strong coupling.

The surprising accuracy and success of the simple adia-
batic approximation (13) in the present strongly correlated
system call for an explanation, which we try to offer in what
follows.

To begin with, we would like to note that, in the charge
channel, the excitation spectrum of 1D interacting systems at
finite momentum ¢ and frequency w resembles in many ways
that of a 1D noninteracting Fermi system.'® In particular, its
support [defined by the region of the (¢, ) plane in which
the density of excitations is largest] is qualitatively similar in
the two cases. The main differences are (i) the Fermi velocity
of the interacting system is corrected by particle-particle in-
teractions, and (ii) the spectral density of excitations of the
interacting system at the absolute zero of temperature [the
density-density dynamic structure factor §,,(¢,)] can have
pronounced substructures as power-law singularities at the
kinematic boundaries of the spectrum.**~*#’ Quantitative cal-
culations of the excitation spectrum in the spin channel and
of the spin-spin dynamic structure factor S(¢q,w) have been
carried out in Refs. 45 and 47. Also in this channel power-
law singularities (at the low-energy onset of the two-spinon
continuum) have been found.*

In our TDDFT approach, electron-hole excitations at finite
q and w are naturally contained in the auxiliary noninteract-
ing system that is used in the Kohn-Sham mapping [Egs. (11)
and (12)]. It is the task of the exchange-correlation potential
to take into account the effects (if any) of (i) and (ii) on the
propagation of a density (spin) packet. The effect of (i) is
very important (since it controls the velocity of propagation
of the packet) and is obviously taken into account by the
static part of our exchange-correlation potential,
v};g‘g(nT,n 1»u) in Eq. (13). Our functional simply “knows”
the exact thermodynamic compressibility and spin suscepti-
bility (and thus the exact charge and spin velocities) from the
Bethe-Ansatz solution of the 1D Hubbard model described

by Her in Eq. (1). The effect of (ii) is not so clear. However,
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FIG. 3. (Color online) Same as in Fig. 1 but for N;=20, N =8, u=+2, W;/y=W,/y=-5/9, and w=2.
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FIG. 4. (Color online) Same as in Fig. 1 but for u=+4.
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FIG. 5. (Color online) Same as in Fig. 3 but for u=+4.

it seems unlikely that the details of the spectral distribution
would show up in the considered evolution of collective ex-
citations in the particle and/or spin density. This expectation
is fully confirmed by the tDMRG results, in which the exci-
tations only show a slight broadening and a decay on the
time scales considered in this work.

Second, we would like to mention that the adiabatic ap-
proximation is very well known to perform extraordinarily
well in reproducing the frequency of collective excitations
such as plasmons*®#’ in a large variety of systems. However,
the linewidth of these collective resonances is strictly zero
within the adiabatic approximation and one has to go beyond
it to capture, e.g., intrinsic damping (due to many-body ef-
fects) of the collective modes (see for example Ref. 48 for a
theoretical calculation of the linewidth of the intersubband
plasmon in two-dimensional (2D) quantum wells and Ref. 50
for a calculation of the same quantity in tunnel-coupled
double-layer electron gases).

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In summary, we have carried out an extensive numerical
study of the collective spin and charge dynamics in strongly
correlated ultracold Fermi gases confined in one-dimensional
tight tube. We have compared the results obtained from time-
dependent density-functional theory within a suitable (Bethe-
Ansatz-based) adiabatic local-spin-density approximation
with accurate results based on the adaptive time-dependent
density-matrix renormalization-group method. We have

found the simple adiabatic local-spin-density approximation
for the time-dependent exchange-correlation potential to be
reliable and surprisingly accurate in describing the collective
evolution of density and spin-wave packets in a wide range
of coupling strengths and spin polarizations.

The adiabatic scheme proposed in this work can also be
used and tested in many other interesting problems. For ex-
ample, one can study spin-charge dynamics after a local
quench in Luther-Emery liquids [which can be modeled by
Eq. (1) with U<O0], Andreev reflection®! in ultracold two-
component Fermi gases, and, of course, quantum dynamics
in the presence of truly time-dependent external potentials.

In this last respect, we can anticipate that more sophisti-
cated functionals in which the main ALDA assumptions, i.e.,
(i) locality in space and time and (ii) the complete neglect of
memory effects, are relaxed may be needed to handle truly
time-dependent problems. The importance of spatial versus
temporal nonlocality has already been commented at length
in earlier literature.”> More recent numerical results’?> of a
TDDFT study of small (i.e., L=4—12) Hubbard chains seem
to indicate that both (i) and (ii) have to be transcended to
describe the time dynamics of strongly correlated systems.

Finally, we would like to mention that adiabatic and
beyond-adiabatic exchange-correlation functionals based on
time-dependent current-spin-density-functional theory have
also been recently applied® to study collective spin and
charge dynamics at finite temperature in one-dimensional
continuum models.
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FIG. 6. (Color online) Top panels: Charge n,(¢) and spin s,(f) occupations as functions of lattice site i and time ¢ for L=72, N;=N|
=14, u=+6, W;/y=W,/y=-7/18, and w=2. TDDFT data (filled circles and squares) are compared with tDMRG data (X and +). Left:
ground-state charge and spin occupations for times 7= 0. Right: same as in the left panel but at time =67/ y. Bottom panels: same in the top

panels but for Ny=20 and N =8.
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